haraatmak shreni
ganit mein haraatmak shreni apasaari anant shreni hai:
iska naamakaran samaantar shreni ke vyutkram se hua hai. samaantar shreni ke padon ko yahaan har mein likha jaata hai arthaat samaantar shreni ke pad se sambandhit haraatmak shreni ka pad hai.
angreji mein ise haarmonik shreni kehte hain jiski avadhaarana sangeet ki dhun se hua. ek kampanasheel tantu se nikalne vaal adhisvarak (dhun) 1/2, 1/3, 1/4, aadi, tantu ki moolabhoot tarangadairdhya hain. pratham pad ke baad shreni ka pratyek pad apne paas vaale padon ka
anukram
itihaas
chaudaveen shataabdi mein nikol oresm nein yeh siddh kiya ki haraatmak shreni apasaari hoti hai lekin yeh parinaam kisi ne naheen dekhe. 17 veen shataabdi mein petro mangoli, johaan barnooli aur Jacob barnooli iski upapatti ki.
aitihaasik drushti se haraatmak anukram ko vaastukaaron mein kuchh prasiddhi mili. yeh vishesh roop se
virodhaabhaas
prathamadrushtaya yeh shreni sahaj naheen lagti kyonki yeh ek apasaari shreni hai balki iska n vaaain pad jab n anant ki or agrasar hai, shoonya ki or agrasar hota hai. haraatmak shreni ka apasaran
kyonki shreni ka maan svechh roop se badhta hai jaise jaise n ka maan badhata hai, at: yeh anupaat ek se adhik bhi hona chaahiye jisse siddh hota hai ki keeda feete ke ant tak pahuainch jaayega. yeh ghatna ghatit hone mein lagne wala samay arthaat n ka maan adhik ho sakta hai, tathaapi, lagbhag e100 athva 1040 se bhi adhik. yaddapi haraatmak shreni apasaari hai at: yeh itna dheemein hota hai.
apasaran
haraatmak shreni ke apasaari hone ke anek parinaam upalabddh hain jinmein se do yahaaain diye gaye hain.
tulana pareekshan
ise apasaari siddh karne ka pratham tarika ise kisi anya apasaari shreni ke saath tulana karne ka hai
haraatmak shreni ka pratyek pad isse tulana ki gayi shreni ke pratyek pad se bada athva baraabar hai at: haraatmak shreni ka sankalan (yog) bhi dviteeya shreni ke yog se adhik hoga. yaddapi dviteeya shreni ka kul yog anant hai:
isse siddh hota hai ki haraatmak shreni ka yog bhi anant hona chaahiye. doosare shabdon mein uparokt tulana se siddh hota hai ki
jahaaain k ek dhanaatmak poornaank hai.
samaakalan pareekshan

yeh siddh karna sambhav hai ki haraatmak shreni ke sankalan ko iski tulanaatmak shreni ke anant samaakal se tulana karne par apasaari praapt hoti hai. vishesh roop se, maana chitr mein pradarshit aayaton mein pradarshit tarkon ko sahi hain. pratyek aayat ki chaudaai ek ikaai aur aur ooainchaai 1/n ikaai hai, at: sabhi aayaton ka kul kshetrafal, haraatmak shreni ke kul yog ke baraabar hoga:
- sabhi aayaton ka kul kshetrafal
yaddapi, vakr y= 1/x ke neeche 1 se anant tak ka kshetrafal nimn prakaar hai:
- vakr ke neeche ka kshetrafal
choonki yeh kshetrafal poornataya aayat ke andar sthit hai at:
apasaran ki dar
haraatmak shreni bahut mand roop se apasaari hai. udaaharan ke liye, iske pratham 1043 padon ka yog 100 se kam hai.[3] yeh isliye ki shreni ka aanshik sankalan mein laghuganakeeya vruddhi hoti hai.
jahaaain oyalar mascheroni niytaank (Euler–Mascheroni constant) (krupaya sahi hindi uchchaaran likhein) aur ke shoonya ki taraf agrasar hone par ~ anant ki or agrasar hota hai. liyonaard oyalar ke anusaar
aanshik sankalan
apasaari haraatmak shreni ka nvaaain aanshik sankalan
ko nveen
ye bhi dekhein
- sammishr laghuganak
- reemaan parikalpana
- haraatmak shredhi
sandarbh
- ↑ George L. Hersey, Architecture and Geometry in the Age of the Baroque, p 11-12 and p37-51.
-
↑ Graham, Ronald; Knuth, Donald E.; Patashnik, Oren (1989), Concrete Mathematics (2nd san॰), Addison-Wesley, pa॰ 258–264, aai॰aऍsa॰abee॰aऍna॰
978-0-201-55802-9 - ↑ Ed Sandifer, How Euler Did It -- Estimating the Basel problem (2003)
baahari kadiyaaain
- hejvinkl, michyel, san. (2001), "haraatmak shreni (Harmonic series)", ensaaiklopeediya of maithamaitiks, springar, aai॰aऍsa॰abee॰aऍna॰ 978-1-55608-010-4, http://www.encyclopediaofmath.org/index.php?title=p/h046540
- "The Harmonic Series Diverges Again and Again", The AMATYC Review, 27 (2006), pp. 31–43. Many proofs of divergence of harmonic series.
- erik dablyoo veisateen, maithavarld par haraatmak shreni (Harmonic Series)
- Use Of The Zonal Harmonic Series For Obtaining Numerical Solutions To Electromagnetic Boundary Value Problems; Proceedings Of Thru-The-Earth Electromagnetics Workshop